Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
نویسندگان
چکیده
In this paper, we find the greatest values [Formula: see text] and the smallest values [Formula: see text] such that the double inequalities [Formula: see text] and [Formula: see text] hold for all [Formula: see text] with [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] are the arithmetic-geometric, Toader and generalized logarithmic means of two positive numbers a and b, respectively.
منابع مشابه
Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means
We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)
متن کاملOptimal convex combination bounds of geometric and Neuman means for Toader-type mean
In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text], [Formula: see text] , [Formula: see text] and [Formula: see text] , where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] are the Toader, geometric, arithmetic and two Neu...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملOptimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means
*Correspondence: [email protected] 2School of Mathematics and Computation Science, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article Abstract In this paper, we present sharp bounds for the two Neuman means SHA and SCA derived from the Schwab-Borchardt mean in terms of convex combinations of either the weighted arithmetic and ...
متن کاملA remark on the means of the number of divisors
We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$, where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$, with $d(n)$ denoting the number of positive divisors of $n$. Also, we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017